Search results for "Serpentine pipe"

showing 2 items of 2 documents

Fully developed laminar flow and heat transfer in serpentine pipes

2015

Abstract A serpentine pipe is a sequence of parallel straight pipe segments connected by U-bends. Its geometry is fully characterized by pipe radius, a , bend curvature radius, c and length of the straight segments, l . The repeated curvature inversion forces the recirculation (secondary flow) pattern to switch between two specular configurations, which may enhance mixing and heat or mass transfer with respect to a constant-curvature pipe at the cost of an increase in pressure drop. In the present work, fully developed laminar flow and heat transfer in serpentine pipes were investigated by numerical simulation. The curvature δ  =  a / c was made to vary between 0.1 and 0.5 while the paramet…

Pressure dropMaterials sciencePrandtl numberGeneral EngineeringCurved pipeReynolds numberLaminar flowMechanicsSerpentine pipeStokes flowComputational fluid dynamicsCondensed Matter PhysicsCurvatureNusselt numberPhysics::Fluid Dynamicssymbols.namesakeHeat transfersymbolsU bendSecondary flowSettore ING-IND/19 - Impianti Nucleari
researchProduct

Transition to turbulence in serpentine pipes

2017

Abstract The geometry considered in the present work (serpentine pipe) is a sequence of U-bends of alternate curvature. It is characterized by pipe diameter, d = 2a and bend diameter, D = 2c. The repeated curvature inversion forces the secondary flow pattern, typical of all flows in curved ducts, to switch between two mirror-like configurations. This causes (i) pressure drop and heat or mass transfer characteristics much different from those occurring either in a straight pipe or in a constant-curvature pipe, and (ii) an early loss of stability of the base steady-state flow. In the present work, four values of the curvature δ = a/c (0.2, 0.3, 0.4 and 0.5) were considered. For each value of …

020209 energyPrandtl number02 engineering and technologySerpentine pipeCondensed Matter PhysicCurvature01 natural sciences010305 fluids & plasmasPhysics::Fluid Dynamicssymbols.namesakeEngineering (all)Computational fluid dynamic0103 physical sciences0202 electrical engineering electronic engineering information engineeringSecondary flowSettore ING-IND/19 - Impianti NucleariPhysicsPressure dropTurbulenceGeneral EngineeringReynolds numberMechanicsCondensed Matter PhysicsSecondary flowTransition to turbulenceClassical mechanicsHeat fluxFlow conditioningsymbolsBifurcation
researchProduct